Читать книгу Огарок во тьме. Моя жизнь в науке онлайн

20 страница из 61

Ответ – да, но не все способны понять или объяснить почему. Помогает, опять же, посмотреть на задачу под другим углом. Представьте, что в момент, когда монах отправляется наверх, другой монах одновременно отправляется в обратный путь по той же тропе, с вершины вниз. Очевидно, что в какой-то точке тропы два монаха встретятся. Эта загадка позабавила меня, но не думаю, что я задавал ее на собеседованиях, потому что, как только вы понимаете в чем дело, она, в отличие от вопроса про Эль Греко (или про зеркала, или про перевернутое изображение на сетчатке, или тем более про явь и сон), не ведет никуда дальше. Но, опять же, она показывает силу взгляда под другим углом. Пожалуй, это черта “нестандартного мышления”.

А вот вопрос, который я ни разу не задавал, но он может подойти для проверки математической интуиции того рода, что требуется биологам (интуиции – в противоположность математическим навыкам вроде алгебраических манипуляций или арифметических вычислений; но последние тоже не повредят). Почему такое множество воздействий – гравитация, свет, радиоволны, звук – подчиняется закону обратных квадратов? По мере удаления от источника сила воздействия резко снижается пропорционально квадрату расстояния, но почему? Можно сформулировать интуитивное объяснение: воздействие распространяется вовне во всех направлениях, распластываясь по внутренней поверхности расширяющейся сферы. Чем больше площадь расширяющейся поверхности, тем более “тонко размазано” воздействие. Площадь поверхности (как мы помним из евклидовой геометрии и могли бы доказать, если бы поставили такую цель, – но на собеседовании не будем утруждаться) пропорциональна квадрату радиуса. Отсюда закон обратных квадратов. Вот вам математическая интуиция, которую не обязательно сопровождать математическими манипуляциями: важное качество для студентов-биологов.

Правообладателям