Читать книгу Уравнение Бога. В поисках теории всего онлайн

17 страница из 24

Представьте, как Земля обращается вокруг Солнца (см. рис. 2). Обозначим радиус орбиты Земли R; эта величина не меняется при движении Земли по орбите (на самом деле орбита Земли имеет эллиптическую форму, так что R слегка меняется, но в данном примере это неважно). Координаты Земли на орбите обозначаются как X и Y. При движении Земли X и Y непрерывно меняются, но R остается инвариантным, то есть постоянным.



Рис. 2.


Уравнения Ньютона[6] сохраняют эту симметрию, то есть при движении Земли по орбите притяжение, существующее между Землей и Солнцем, остается неизменным. При смене системы отсчета законы остаются прежними. С какой бы стороны и под каким бы углом мы ни рассматривали задачу, правила будут неизменными и мы получим одни и те же результаты.

Когда мы перейдем к обсуждению единой теории поля, концепция симметрии будет встречаться нам постоянно. Мы увидим, что симметрия – один из мощнейших инструментов объединения всех взаимодействий в природе.

Подтверждение законов Ньютона

За прошедшие столетия было найдено немало подтверждений законов Ньютона, и они оказали громадное влияние как на науку, так и на общество. В XIX веке астрономы заметили в небесах странную аномалию. Положение планеты Уран заметно отклонялось от предсказаний, сделанных на основании законов Ньютона. Ее орбита была не идеальным эллипсом, а слегка искажалась. Получалось, что либо законы Ньютона здесь не работают, либо существует еще одна планета, пока не открытая учеными, которая своим притяжением видоизменяет орбиту Урана. Вера в законы Ньютона была столь велика, что физики, в том числе и Урбен Леверье, занялись вычислением предполагаемого положения загадочной планеты. В 1846 г. астрономы с первой попытки обнаружили ее в предсказанной точке с отклонением в пределах одного градуса и окрестили Нептуном. Это стало наглядным примером работы законов Ньютона и первым случаем в истории, когда чистая математика позволила предсказать существование крупного небесного тела.


Правообладателям