Читать книгу Information Organization of the Universe and Living Things. Generation of Space, Quantum and Molecular Elements, Coactive Generation of Living Organisms and Multiagent Model онлайн
18 страница из 22
1.3. Formation of the Universe in physical sciences
In mathematics there exists the domain of real numbers, which is a complete Archimedean body, whose use defines sophisticated and very powerful equations: the differential equations and the partial differential equations. This domain of real numbers using differential equations has allowed physicists to define very fine theories of the evolution of matter in the Universe. To define a differential equation, we first define the variables that characterize the observed system, and then we define the functions and their relations that should allow us to predict the evolution of the values of the variables, taking into account the values of certain constants. All this is put into a differential equation which must calculate the functions and thus obtain the characters of the evolution of a system starting from an initial state. This will be used in a very important way.
The physical sciences have been working for a very long time on a generation model for the Universe. The main model of the physical theory describing the creation of the Universe is the Big Bang model, posed by Alexandre Friedmann in 1925 and by Edwin Hubble in 1929, then very widely developed thereafter. This model posits the existence of a primordial nucleosynthesis, a very singular set of quantum elements with a considerable temperature that inhibits the propagation of photons that continuously interact with quantum particles. After a hundred seconds, the photons lose energy and the protons and neutrons are able to associate in a durable way to generate the first complex nuclei of the elements. From this initial set, the Universe developed by a considerable dilation while its temperature remained very high. The initial temperature of the Universe fell to reach 3000 degrees after 380,000 years, producing light by the emission of quantities of photons. This light of the cosmological background radiation (Peebles 1980) is observable today, when the temperature of the Universe is only 2.7 degrees above absolute zero. The light formed by the photons therefore propagated out of this initial set by constituting the cosmological background, it propagated in a space whose theory does not specify how it is formed or where it comes from (Klein 2010). The classical model posits that the generic elements of the galaxies were created by this very particular initial set and that the Universe was constituted by continuous dilation, its expansion.