Читать книгу A Modern Zoroastrian онлайн

23 страница из 38

I change, but I cannot die,

he enunciated a scientific axiom of the first importance. Creation, in the sense of making something out of nothing, is a thing absolutely unknown and unknowable to us. If we say we make a ship or a steam-engine, we simply mean that we transform existing matter and existing energies into new combinations, which give results convenient for our purpose. So if we talk of making a world, our idea really is that if our powers and knowledge were indefinitely increased we might be able, given the atoms and energies with their laws of existence, to put them together so as to produce the desired results. But how the atoms and their inherent laws got there is a question as to which knowledge, or even conceivability, is impossible, for it altogether transcends human experience.

Before finally taking leave of atoms it may be well to state shortly that science, not content with having proved their existence and weighed them in terms of the lightest element, the hydrogen atom, has attempted, not without success, to solve the more difficult problem of their real dimensions, intervals, and velocities. This problem has been attacked by Clausius, Sir W. Thomson, Clerk Maxwell, and others, from various sides: from a comparison with the wave-lengths of light; with the tenuity of the thinnest films of soap-bubbles just before they burst, and when they are presumably reduced to a single layer of molecules; and from the kinetic theory of gases, involving the dimensions, paths, and velocities of elastic bodies, constantly colliding, and by their impacts producing the resulting pressure on the confining surface. All these methods involve such refined mathematical calculations that it is impossible to explain them popularly, but they all lead to nearly identical results, which involve figures so marvellous as to be almost incomprehensible. For instance, a cubic centimetre of air is calculated to contain 21 trillions of molecules—i.e. 21 times the cube of a million, or 21 followed by 18 ciphers; the average distance between each molecule equals 95 millionths of a millimetre, which is about 25 times smaller than the smallest magnitude visible under a microscope; the average velocity of each molecule is 447 metres per second; and the average number of impacts received by each molecule in a second is 4,700 millions.

Правообладателям