Читать книгу Glass and Glass Manufacture онлайн

19 страница из 24

In a purely physical sense glass is a supercooled liquid, the silicates are only in mutual solution with each other, and they appear to be constantly changing. Glass cannot be described as a homogeneous or definite chemical compound. Many of the after effects and changes which occur in glass, and the formation of crystals in the devitrification of glass tend to prove the above assertion. The colour changes which take place when ruby and opalescent glass is re-heated, and even the change in colour of glass going through the lehr, cannot be explained unless in the above sense of viewing these remarkable changes. Glasses with an excess of lime in their composition are more subject to devitrification than lead glasses or those of moderate lime content constructed from more complex formulas. The presence of a small proportion of alumina in glass prevents this tendency to devitrification and ensures permanency. Those glasses which have the highest silica content, and which have been produced at the highest temperatures, show the greatest stability in use. Bohemian glasses of this type contain as much as 75 per cent. silica, and are produced in gas-fired regenerative or recuperative furnaces, where the heat approaches 1,500° Centigrade. Such glass is much sought after for enamelling on, being harder and less easily softened by the muffle heat firing on the enamels used. Taking two corresponding glasses of the same basicity, or proportion of silicic acid to the bases present, those formulae which have the greater complexity of bases produce the more fusible glasses. A multiple of bases constituting a more active flux than a single base content, it follows that a compound mixture of silicates fuses or melts at a lower temperature than the respective simple silicates would. These facts are useful in constructing commercial formulae for glasses.

Правообладателям