Читать книгу Experimental Mechanics. A Course of Lectures Delivered at the Royal College of Science for Ireland онлайн

32 страница из 68

Fig. 18.

41. We have no means of showing the magnitude of the strain along the strut, but we shall prove that it can be computed by means of the parallelogram of force; this will also explain how it is that the tie is strained by a force three times that of the weight which is used. Through c (ssss1) draw c p parallel to the tie a b, and p q parallel to the strut c b then b p is the diagonal of the parallelogram whose sides are each equal to b c and b q. If therefore we consider the force of 20 lbs. to be represented by b p, the two forces into which it is decomposed will be shown by b q and b c; but a b is equal to b q, since each of them is equal to c p; also b p is equal to a c. Hence the weight of 20 lbs. being represented by a c, the strain along the tie will be represented by the length a b, and that along the strut by the length b c. Remembering that a b is 3' long, c b 3' 6", and a c 1', it follows that the strain along the tie is 60 lbs., and along the strut 70 lbs., when the weight of 20 lbs. is suspended from the hook.

Правообладателям