Читать книгу Макрокинетика сушки онлайн
12 страница из 61
.
Тогда изменение массы вдоль оси х за счет изменения скорости составит:
.
Аналогично определяется изменение массы вдоль остальных осей. Суммарное изменение массы, отнесенное к единице объема, вдоль всех координат должно быть равно нулю:
Выражение в скобках в уравнении (1.2) называется дивергенцией вектора скорости и обозначается div u. С учетом его получим для (1.2):
Это выражение закона сохранения массы и оно известно в гидродинамике, как уравнение сплошности, неразрывности потока. В элементарной форме это уравнение для одномерного потока, движущегося со средней скоростью v примет вид:
где М – массовый расход потока, S – площадь его поперечного сечения.
Для несжимаемых жидкостей (ρ = Const) уравнение (1.3) упрощается:
Для описания химического процесса в уравнении (1.2) вместо плотности подставляют массовую концентрацию компонента С. С учетом скорости образования этого компонента по химической реакции r, если она имеет место, для уравнения (1.2) получим:
С учетом, что концентрация компонента изменяется в пространстве и во времени, получим: