Читать книгу Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет онлайн
1 страница из 42
Терренс Сейновски
Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет
Terrence J. Sejnowski
The Deep Learning Revolution
© 2018 Massachusetts Institute of Technology
© Райтман М. А., перевод на русский язык, 2019
© Сазанова Е. В., перевод на русский язык, 2021
© Оформление. ООО «Издательство «Эксмо», 2022
* * *Предисловие
Используя распознавание голоса в смартфоне на Android или в Google Переводчике в Интернете, вы сталкиваетесь с нейросетью, натренированной глубоким обучением. За последние несколько лет глубокое обучение обеспечило компании Google прибыль, достаточную для того, чтобы покрыть расходы на все футуристические проекты Google X, включая беспилотные автомобили, очки Google Glass и научно-исследовательский проект Google Brain[1]. Она одной из первых начала применять глубокое обучение. В 2013 году Google наняла Джеффри Хинтона, отца-основателя глубокого обучения, и сейчас другие компании пытаются угнаться за ней.
Современные достижения в области искусственного интеллекта (ИИ) получены благодаря реверсивной инженерии[2] человеческого мозга. Алгоритмы обучения многоуровневых нейронных сетей основаны на том, как нейроны взаимодействуют друг с другом и изменяются в процессе получения опыта. Внутри сети вся многогранность мира превращается в калейдоскоп моделей деятельности, которые и являются основными составляющими ИИ. Модели нейросетей, с которыми я работал в 1980-х годах, едва сравнимы с современными, состоящими из миллионов искусственных нейронов и десятков слоев. Человеческое упорство, огромный объем данных и мощные компьютеры позволили глубокому обучению совершить прорыв в решении самых сложных проблем искусственного интеллекта.