Читать книгу Roentgen Rays and Phenomena of the Anode and Cathode онлайн
10 страница из 42
The essential element in connection with the generation of X-rays is not the coil nor the dynamo, but the electric discharge, especially when occurring within a rarefied atmosphere, provided within a glass bulb, called the discharge tube throughout the book, but which has usually been called by different names, for example, the receiver of an air pump, or a Geissler tube, when the air is not very highly exhausted, or a Crookes tube (see picture at § 123) when the vacuum is definitely much higher by way of contrast. It has also been called a Hittorff tube, the Lenard tube, and by several other names, according to its peculiar characteristics.
Fig. 1.—Head.
Fig. 2.—Broken Arm, Overlapping.
(Due to defective setting.)
Fig. 3.—Ribs.
Fig. 4.—Knee, Knickerbocker Buttons, Bullet in Femur.
FROM SCIAGRAPHS BY PROF. DAYTON C. MILLER. § 204.
For those who are not acquainted with the nature of the electric charge and discharge, nor with the peculiar and exceedingly interesting phenomena which various investigators have discovered from time to time, nor with the variety of effects according to the nature and the pressure of the atmosphere within the glass bulb, it is exceedingly difficult to understand with any degree of satisfaction the properties, principles, laws, theories, and manner of application of cathode and X-rays. Consequently, the greater part of the book treats of the electric charge and discharge in conjunction with certain kindred phenomena. Primarily, the meaning of the electric discharge may be derived by referring to Fig. 2, page 17, where there is shown an electric spark, indicated by radial lines between the terminals of a fine wire forming the long and fine coil or secondary circuit. Imagine that the wires are at great distances apart. Let them be brought closer and closer together. By suitable tests it will be found, for example, that no current passes through the wire, but when the points are brought sufficiently close together a spark will occur between the two terminals. ssss1. Sometimes instead of what is understood as a spark, a brush or glow takes place (ssss1 and ssss1), and in fact a numerous variety of effects occur, a general name for all being conveniently termed an electric discharge. Even if no sudden discharge takes place, yet, as when the terminals are far apart, there may be a charge or a tendency, or, as it is technically called, a difference of potential, between the two electrodes, one of which is the cathode and the other the anode. This is comparable to a weight upon one’s hand, tending continually to fall, and always exerting a pressure, and it will fall when the hand is suddenly removed. This is in the nature more of an analogy than of an exact correspondence. A discharge through open air, while adapted to produce a great many curious as well as useful effects, does not act as a generator of X-rays. § 136. Another class of phenomena is obtainable by exhausting the air to a certain extent from a discharge tube, thereby obtaining what is usually called a low vacuum. Such bulbs have been called Geissler tubes. Neither can X-rays be generated therefrom to any practicable extent, but only feebly if at all. ssss1. Hittorff, Varley (§ 61a), Crookes (ssss1 to 61, inclusive), were the first to discover and study the different phenomena that are obtained by diminishing the pressure within the discharge tube to a decrement of several thousand millionths of an atmosphere. This will explain why so many allusions have been made to the Crookes tube, for when the electric discharge is caused to take place in such a high vacuum X-rays are propagated in full strength.