Читать книгу Experimental Mechanics. A Course of Lectures Delivered at the Royal College of Science for Ireland онлайн
34 страница из 68
45. According to the numerical proportions we have employed for illustration, the strain along the tie rod would be 30 tons when the load was 10 tons, and therefore the tie must at least be strong enough to bear a pull of 30 tons; but it is customary, in good engineering practice, to make the machine of about ten times the strength that would just be sufficient to sustain the ordinary load. Hence the crank must be so strong that the tie would not break with a tension less than 300 tons, which would be produced when the crane was lifting 100 tons. So great a margin of safety is necessary on account of the jerks and other occasional great strains that arise in the raising and the lowering of heavy weights. For a crane intended to raise 10 tons, the engineer must therefore design a tie rod which not less than 300 tons would tear asunder. It has been proved by actual trial that a rod of wrought iron of average quality, one square inch in section, can just withstand a pull of twenty tons. Hence fifteen such rods, or one rod the section of which was equal to fifteen square inches, would be just able to resist 300 tons; and this is therefore the proper area of section for the tie rod of the crane we have been considering.