Читать книгу Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций онлайн
9 страница из 17
c = 30,48 × 6;
с = 182,88.
Итак, 6 футов – это 182,88 см.
В приведенном примере с – преобразуемое выражение. Если известна длина в сантиметрах, но ее следует перевести в дюймы, f нужно перенести в левую часть формулы, то есть должно получиться «f =». Действия будут напоминать решение уравнения. Чтобы вычислить c, мы умножали f на 30,48. Значит, разделив c на 30,48, получим:
f = с ÷ 30,48.
Другими словами, если бы мы захотели узнать, сколько футов в 182,88 см, то разделили бы это число на 30,48, получив 6 футов.
Неравенства
Часто цель математических действий – удостовериться и показать, что x равно определенному числу. Но иногда подобная конкретика нежелательна или невозможна, поскольку есть необходимость рассмотреть диапазон значений. Именно для этого мы и прибегаем к неравенствам. Допустим, по опыту мне известно, что каждое воскресенье за обедом моя семья съедает больше 7, но до 12 картофелин. Если представить количество картофеля в виде p, то «больше 7» будет выглядеть как p > 7. Предлагаю рассматривать символ неравенства как пасть прожорливого крокодила, который всегда норовит выбрать из двух объектов тот, который больше (в нашем случае это p), и съесть его. Поскольку «7 меньше p» означает то же, что и «p больше 7», выражение можно записать и наоборот: 7 < p. «До 12» означает, что p может быть как меньше, так и равно 12. Неравенство будет выглядеть следующим образом: p ≤ 12. У символа появилась дополнительная палочка, которая означает, что p способно быть не только меньше, но и равняться 12. Записав рядом оба выражения, мы охватим весь диапазон возможных значений p: