Читать книгу Виртуальная конкуренция. Посулы и опасности алгоритмической экономики. Учебник онлайн

32 страница из 68

Недавний запуск компанией Google сети Deep Q показал достоинства усовершенствованной способности к самообучению. Компьютер настроили для прохождения старых игр компании Atari. Важно, что он не был запрограммирован, как реагировать на все возможные действия в игре. Лучше сказать, что он опирался на модели, которые позволяли ему «изучать» положения игры методом проб и ошибок, с течением времени улучшая свои результаты. Эта технология имитирует обучение человека за счет «изменения силы моделируемых нейронных связей на основе жизненного опыта. Сеть Google Brain, включающая 1 млн моделируемых нейронов и 1 млрд моделируемых нейронных связей, была в десять раз больше, чем любая прежняя глубокая нейронная сеть»45.

Методы глубокого обучения были также задействованы в технологиях, связанных с повседневной жизнью. Умные алгоритмы всё активнее используются для осуществления автоматической поддержки клиентов, электронной коммерции, онлайнового общения и для создания интерактивного контента для интернет-пользователей. Уже в 2015 г. Европейская инспекция по защите данных (European Data Protection Supervisor) отметила, что «алгоритмы способны понимать и переводить языки, распознавать образы, писать новостные заметки и анализировать медицинские данные»46. Например, компания Microsoft использовала данную технологию в своей операционной системе Windows Phone и в голосовом поиске Bing47; Google, Toyota, Apple, Audi и Jaguar – при разработке «беспилотных» автомобилей48; их также применяют при анализе фондовых рынков и в других операциях49.


Правообладателям