Читать книгу Dry Beans and Pulses Production, Processing, and Nutrition онлайн
106 страница из 239
GENOMIC RESEARCH AND TRANSGENIC BEANS
Genomic research
The Phaseolus vulgaris genome sequence of the Andean landrace, Chacha Chuga (G19833) was released in 2014 (Schmutz et al. 2014); v2.1 is the most current version available, which has been updated with long read PacBio sequencing. The sequence is available at phytozome.jgi.doe.gov. Since the genome release, there has been a surplus of genomics research on beans. This research has aided in our understanding of genetic mechanisms for various traits, including better understanding pathogen response for anthracnose and common bacterial blight (Vaz Bisneta et al. 2020; Simons et al. 2021), drought stress (Diaz et al. 2020), and domestication related traits (Soltani et al. 2021), to name a few.
Marker platforms have largely moved to SNP based, with the Illumina BARCBean6K_3 SNP BeadChip (Song et al. 2015) and BARCBean12K BeadChip, which includes all SNPs from the BARCBean6K_and additional SNPs among a set of Andean accessions. The large reduction in the cost of DNA sequencing in recent years has made sequencing (whether RNA or DNA) a fairly regular aspect of bean genetics discovery work. Genotype by sequencing is also commonly applied as a SNP marker generating method that can then be used for mapping purposes, for both recombinant inbred line populations and diversity panels (Schröder et al. 2016; Katuuramu et al. 2018). Genome resequencing is also gaining popularity in bean genomics projects to gain understanding of the genetic architecture for traits such as seed yield and stress tolerance (Wu et al. 2020). Kompetitive Allele Specific PCR (KASPTM)‐based SNP marker system has been successfully integrated for marker assisted breeding tool in many labs (Raatz et al. 2019). This technology is easily outsourced to service companies, which makes it a viable option for most breeders, even those without a lab or dedicated DNA‐related equipment. The new frontier in genomics for bean breeding is genomic selection (Keller et al. 2020). Some studies are underway, although it remains to be seen how easily this will be implemented since dry bean breeding efforts occur in at least 10 different market classes, each somewhat isolated from the other, so it may not be possible to achieve the numbers necessary to make genomic prediction worth the investment.