Читать книгу Didáctica de la matemática онлайн

86 страница из 102

ssss1

Cualquiera que tenga la ambición de hacerse escuchar en medio de una multitud, deberá hacer presión, empujar, ponerse adelante y trepar con muchos esfuerzos, hasta que se habrá levantado a una cierta altura sobre los demás. Ahora, en toda asamblea, por una particular propiedad, se puede observar que, sobre las cabezas de los asistentes, por más que se hallen amontonados, existe siempre espacio suficiente; pero es difícil llegar, porque abrirse paso en una multitud es una fatiga dura, como salir del infierno; (…). A tal fin, en todas las épocas, la solución de los filósofos ha sido la de dar vida a construcciones en el aire.

Jonathan Swift,

Fábula del barril.

Mención a parte se merece la historia de la versión escolar, dicha a veces “ingenua”, de la teoría elemental de conjuntos que apareció en el mundo de la escuela en los años 60 empezando en los Estados Unidos, Francia y Bélgica, pero llegando a todos los continentes.

[A propósito de denominación, debe decirse explícitamente que “conjunto” es, en teoría de los conjuntos y por lo tanto en matemáticas, un término abstracto; pero cuando se usa didácticamente en los niveles escolares primarios, se le asimila a los nombres “reunión”, “colección” y otros semejantes, precisamente en el sentido concreto, de más... cosas, a veces verdaderos objetos materiales, reunidos en un todo único y pensadas colectivamente. Por lo que, aviso al lector lógico, que en lo que sigue de este párrafo, usaré el término “conjunto” en esta acepción no-matemática, tomada del lenguaje natural y del uso que de ella se hace desde hace décadas en una didáctica a veces ingenua y burda]23.


Правообладателям