Читать книгу Didáctica de la matemática онлайн

89 страница из 102

¿En qué consiste tal impulso? Piaget puso en evidencia algunas supuestas dificultades que el niño halla en su propia construcción del “concepto de número”, independientemente de lo que eso signifique. La primera se refiere al hecho que el niño no parece en grado de aferrar la equinumerosidad de una colección dada de objetos, en el momento en el que se dispongan perceptivamente en modos diferentes (hago referencia al célebre experimento sobre la así llamada “conservación del número”, cuando los objetos de un conjunto se desparraman sobre la mesa después de haber estado cerca entre sí). Otra consiste en el hecho que diferentes disposiciones de objetos de más conjuntos parecen hacer que el niño afirme que se trata de números diferentes de objetos, aunque no sea así.

Según Piaget, en la base de tales dificultades, se hallaría la incapacidad del niño de aferrar la “conexión uno-a-uno” entre objetos de diferentes conjuntos. He aquí entonces que la idea de correspondencia biunívoca entre conjuntos se elige como base, como piedra fundamental de toda la didáctica de los números, desde preescolar. Y eso comporta que haya existido una sobrevaloración del concepto cardinal de número con respecto al ordinal. Se vuelve institucional un gran retraso en la introducción del número en sus aspectos usuales, para poderlo construir por medio de complejos procedimientos “de abstracción”: concepto de equipotencia entre conjuntos finitos, clases de equivalencia, representante de cada clase27.


Правообладателям