Читать книгу Small Animal Laparoscopy and Thoracoscopy онлайн
123 страница из 232
Although fluorescence specific scopes exist (see next section on fluorescence imaging), the standard scopes can also be used, by adding a “snap‐on” dedicated filter between the ocular of the scope and the camera head lens, thus filtering the image to make visible the specific desired wavelengths. The subtracted light is eliminated from the picture, and a specific contrast obtained for the final image displayed on the screen. However, it is highly suggested for routine work with NIR that NIR‐dedicated scopes with integral filters be used since the snap‐on filters do not provide the same quality.
Using a telescope and instruments of the same diameter (i.e., 5 mm) is convenient for maximum flexibility during surgery and allows for exchanging location of the telescope and instruments during a procedure without exchanging ports [1–5, 9]. Nevertheless, trocar cannula can be fitted with a reducer to accommodate smaller diameter instrumentation without loss of pneumoperitoneum [9].
The development and adoption by surgeons of smaller diameter endoscopes has resulted in the detail provided by full HD miniature laparoscopy and the increasing trend toward needlescopy and associated instrumentation sets. That stated, miniature laparoscopy and needlescopy techniques make use of any rigid scope with a diameter equal to or smaller than 3.3 mm. The most common scope range used in clinical practice includes the 2.0, 2.4, 2.7, 3.0, and 3.3 mm. Therefore, the instrumentation varies from 2.0 to 3.5 mm. These scope lengths range from 14 to 25 cm allowing complete surgical access to deeper anatomic structures, even in medium‐sized patients.